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ABSTRACT
Recent single-molecule enzymology measurements with improved
statistics have demonstrated that a single enzyme molecule exhibits
large temporal fluctuations of the turnover rate constant at a broad
range of time scales (from 1 ms to 100 s). The rate constant
fluctuations, termed as dynamic disorder, are associated with
fluctuations of the protein conformations observed on the same
time scales. We discuss the unique information extractable from
these experiments and the reconciliation of these observations with
ensemble-averaged Michaelis-Menten equation. A theoretical
model based on the generalized Langevin equation (GLE) treatment
of Kramers’ barrier crossing problem for chemical reactions
accounts naturally for the observation of dynamic disorder and
highly dispersed kinetics.

Introduction
Most biochemical reactions are facilitated by enzymes.
Enzymology has benefited from tremendous advances in
structural biology and proteomics, which have provided
much information about structures and functions of
enzymes. As the static pictures and interaction networks
of enzymes become known, the quest for understanding

enzyme dynamics, that is, how enzymes work in real-time,
continues to be a central focus of many research
activities.1-6

Ever since the celebrated work of Michaelis and
Menten,7 enzyme kinetics has been vital in characterizing
biochemical mechanisms. The Michaelis-Menten equa-
tion, which describes the hyperbolic dependence of
enzymatic velocity on substrate concentration, provides
a highly satisfactory description for most ensemble-
averaged enzyme kinetics.

Constantly fluctuating in time, however, enzyme mol-
ecules are not synchronized with each other in an
ensemble-averaged kinetic measurement, which compli-
cates extraction of dynamic information. Recent advances
in room-temperature single-molecule spectroscopy cir-
cumvent this complication and allow for dynamic behav-
iors of individual molecules to be recorded in real-time.8-12

The absence of ensemble averaging yields a wealth of
dynamic information, which has profoundly changed the
way enzymatic dynamics is studied.13-26 New knowledge
derived from the single-molecule approach continues to
emerge.

Single-molecule experiments are particularly powerful
in elucidating mechanisms of enzymes by capturing
transient intermediates, of which many specific examples
of biological importance can be given.13-17 In this Account,
however, we focus on a fundamental issue common to
all enzymatic systems, that is, enzymes are dynamic
entities exhibiting distributions and fluctuations of cata-
lytic rate constants. This phenomenon, referred to broadly
as dynamic disorder,27,28 has been inferred previously from
ensemble measurements29 and quantitatively verified by
recent single-molecule experiments.14,18-25 Dynamic dis-
order is not described within the framework of conven-
tional transition state theory30 and Kramers’ theory31,32 of
condensed phase chemical reactions.

The specific questions that we address in this Account
are as follows:
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1. How is single-molecule enzymatic kinetics
reconciled with the conventional Michaelis-Menten
equation in steady-state and pre-steady-state assays?

2. What is the new information available from
single-molecule enzyme turnover experiments, es-
pecially in the context of dynamic disorder?

3. What are the distinct features of conformational
fluctuation of a protein molecule at time scales of
enzymatic reactions, and what are their effects on
dynamic disorder?

4. How can dynamic disorder be described theo-
retically in the framework of Kramers’ barrier cross-
ing theory?

Our interest in these questions was stimulated by two
recent single-molecule experiments, one on enzymatic
turnovers of â-galactosidase25 and the other on confor-
mational dynamics of a protein complex between fluo-
rescein and anti-fluorescein.23 As will be briefly described
below, both the turnover and conformation dynamics
exhibit fluctuations spanning multiple time scales, from
1 ms to 10 s. The first experiment led to the development
of single-molecule Michaelis-Menten equations,24 while
the second led to a model of conformational fluctuations
based on the generalized Langevin equation (GLE) as well
as the experimental determination of the power-law
memory kernel of one-dimensional coordinate. To con-
nect conformational and enzymatic dynamics, we have
developed a theoretical model by incorporating the GLE
with the power-law memory kernel of the reaction coor-
dinate into the Kramers’ barrier crossing problem.33

Numerical simulations based on this model provide a
quantitative description of dynamic disorder that can
account for the single-molecule observations.33

Single-Molecule Enzymatic Turnover Dynamics
We first describe a recent single-molecule experiment by
English et al.25 on â-galactosidase, an enzyme that cata-
lyzes the hydrolysis of lactose to glucose and galactose. A
fluorogenic substrate, resorufin â-D-galactopyranoside
(RGP), is also hydrolyzed by the enzyme, yielding a
fluorescent product, resorufin. When the enzyme molecule
is immobilized, each product molecule generates a de-
tectable fluorescence burst before it quickly diffuses out
of the laser focal volume (Figure 1A). In this way, each
enzymatic turnover event can be recorded in real time.
As expected, the higher the RGP concentration, the higher
the frequency of the fluorescence burst. The advantage
of this assay is that extremely long trajectories can be
obtained for statistical analyses because trajectory lengths
are not limited by photobleaching of the fluorophore.21,22,34

On a single-molecule basis, turnover events are intrin-
sically stochastic. We obtain the sequence of the time
intervals between successive turnover events, the waiting
times, τ, as a function of the turnover index number
(Figure 1B). This waiting time trajectory contains rich
dynamic information, extractable by statistical analyses.35

Of particular interest, as described below, are four of its
properties: the mean waiting time 〈τ〉, the probability

density of waiting time f(τ) and its concentration depen-
dence, the distribution of the turnover rate, and the
autocorrelation function of the waiting times.

According to the Michaelis-Menten mechanism, a
substrate S binds and unbinds reversibly with the enzyme
E to form an enzyme-substrate complex ES that yields
the product P and recovers the original enzyme quickly
(k3 f ∞):

The classic Michaelis-Menten equation,

where [E0] ) [E] + [ES] is the total enzyme concentration
and KM ) (k-1 + k2)/k1 is the Michaelis constant, gives
explicitly the hyperbolic dependence of the enzyme veloc-
ity v on substrate concentration [S] in an ensemble
experiment. In a conventional Lineweaver-Burke plot, 1/v
vs 1/[S] follows a linear relation.6

Our recent theoretical work has shown that single-
molecule and ensemble-averaged measurements are con-
sistent in that the reciprocal of the mean waiting time 1/〈τ〉
) ν/[E0] and obeys the same hyperbolic substrate con-
centration dependence.24 In this way, we can reconcile
single-molecule and ensemble-averaged Michaelis-Ment-
en kinetics. Such a consistency arises from the equivalence

FIGURE 1. (A) Schematic representation of the experimental setup
(not to scale). One â-galactosidase enzyme is linked to a streptavidin-
coated polystyrene bead via a flexible PEG linker. The bead binds
to the biotin-PEG surface of a cover slip. The photogenic substrate
RGP is catalyzed, and the fluorescent product resorufin (R) is
monitored in the diffraction-limited confocal volume. (B) A segment
of the chronological waiting time trajectory as a function of turnover
events index numbers at [S] ) 100 µM. (Adapted from ref 25.)
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between time averaging and ensemble averaging. Figure
2A depicts the Lineweaver-Burke plot, 〈τ〉 vs 1/[S], for five
single-molecule â-galactosidase experiments under five
different substrate concentrations. The linear fit is in
agreement with the conventional Michaelis-Menten equa-
tion (eq 2). As will be shown later, this relationship could
hold even under the condition of dynamic disorder.

Single-molecule experiments can provide much more
information than just the mean waiting time 〈τ〉. For
example, the whole waiting time distribution, f(τ), other-
wise hidden in conventional ensemble-averaged steady-
state assays, can be constructed. We have shown that for
the Michaelis-Menten scheme in eq 1, f(τ) exhibits a
single-exponential rise, followed by a single-exponential
decay,

where R ) x(k1[S]+k-1+k2)2/4-k1k2[S] and â ) - (k1[S]
+ k-1 + k2)/2.26

Figure 2B displays the experimental f(τ) data for three
different substrate concentrations. Remarkably, the curves
exhibit multiexponential decays at high substrate con-
centration and monoexponential decays at low substrate
concentration. The long tails of f(τ) are evident due to the

high dynamic range of the data, which is made possible
by the long trajectories. These long tails should in
principle be observable in some ensemble-averaged pre-
steady-state assays, but in practice they remain hidden
because of the limited dynamic range of ensemble kinetic
data.

This multiexponential behavior of f(τ) cannot be de-
scribed by eq 3 (red curves in Figure 2B). Physically, the
concentration dependence of f(τ) can be understood as
follows: The multiexponential decay of f(τ) at high
substrate concentration is due to dynamic disorder,
caused by the fluctuation of the rate constant of the
catalytic step (k2) at a time scale comparable to or longer
than the waiting times. At low substrate concentration,
however, the binding step becomes rate-limiting; the
monoexponential decay indicates no fluctuation in k1

since substrate concentration is held constant under the
experimental condition. We did not observe evidence for
k-1 fluctuation either.

For quantitative modeling, we assume that there are a
large number, n, of interconverting conformers that
possess different enzymatic reactivities. The Michaelis-
Menten mechanism can then be represented by the
following kinetic scheme:

where k11 ) k12 ) ... ) k1n ≡ k1 and k-11 ) k-12 ) ... ) k-1n

≡ k-1 are assumed for convenience.24

We have shown that when interconversion among the
ESi conformers is slow compared to the enzymatic reac-
tion, that is, k2i . âij (the quasi-static condition), f(t) is
the weighted average of that for each individual con-
former. When n is large,

where w(k2) denotes the probability density of the catalytic
rate constant k2, and R and â are identical to the
corresponding parameters for each conformer in eq 3.
With w(k2) assumed to be a Γ distribution, the observed
f(t) histograms at all concentrations can be well fit globally
to eq 5 (blue curves in Figure 2B).

Remarkably, the reciprocal of the mean waiting time,
1/〈τ〉, of eq 5a still obeys a Michaelis-Menten-type equa-
tion:

FIGURE 2. (A) Single-molecule Lineweaver-Burke plot of mean
waiting times 〈τ〉 vs 1/[S] for five different substrate concentrations.
The best fit with the Michaelis-Menten rate equation gives two
parameters, γ2 ) 730 ( 80 s-1 and CM ) 390 ( 60 µM. These
agree well with the ensemble measurement results k2 ) 740 ( 60
s-1 and KM ) 380 ( 40 µM. (B) Waiting time histograms for three
substrate concentrations, 20, 50, and 100 µM. Red curves are the
fits from eq 3 with k-1 ) 62.4 s-1, k2 ) 730 s-1, and KM ) 380 µM.
The deviation for the high substrate concentration is significant. Blue
curves are the best fits from eq 5a assuming a phenomenological
Γ distribution for w(k2). The fitting function is w(k2) )
[1/(baΓ(a))]k2

a-1 exp(-k2/b) with Γ(a) being the Γ function and a )
4.2, b ) 224 s-1, k1 ) 5 × 107 M-1 s-1, and k-1 ) 18 300 s-1.
(Adapted from ref 25.)
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where CM ) (ø2 + k-1)/k1. Thus, the hyperbolic concentra-
tion dependence is preserved even in the presence of
dynamic disorder under the quasi-static condition. How-
ever, unlike their counterparts νmax/[E]T and KM in eq 2,
ø2 and CM in eq 6 carry distinctly different microscopic
interpretations. Specifically, ø2 ) 1/[∫0

∞ (w(k2)/k2) dk2],
thus ø2 is the weighted harmonic mean of k2 for all
conformers, depending not only on the mean but also on
the distribution of k2.

Equation 5b can be viewed as generalized single-
molecule Michaelis-Menten equation for the situation of
dynamic disorder.24 Its implication is that the phenom-
enological constants k2 (catalytic rate constant) and KM

(Michaelis constant) derived from ensemble-averaged
steady-state assays may no longer hold their conventional
interpretations. Only in the absence of dynamic disorder,
that is, when f(τ) is monoexpoential, ø2 ) k2 and CM )
KM. The fit of the Lineweaver-Burke plot in Figure 2A with
eq 5b yields ø2 ) 730 ( 80 s-1 and CM ) 390 ( 60 µM for
â-galactosidase, consistent with the apparent k2 and KM

from fitting the ensemble enzymatic velocity with the
conventional eq 2.

It is evident from the trajectory in Figure 1B that the
enzymatic velocity of a single enzyme molecule exhibits
large fluctuations. Figure 3A shows the distribution of
enzymatic velocities derived from the single-molecule

trajectory at [S] ) 100 µM by binning every 50 turnover
events to calculate the velocity. The maximum and the
minimum turnover rate differ by more than 10-fold. The
broad distribution of turnover rates indicates that dynamic
disorder is by no means a small effect.

The time scale of the turnover rate fluctuation can be
extracted from the autocorrelation function of the waiting
times

where m is the index number for turnover events and ∆τ-
(m) ≡ τ(m) - 〈τ〉, the brackets denoting the time averaging
along the trajectory.14,25,26 In the absence of turnover rate
fluctuation, C(m) ) 0 for m > 0. The index number m
can be further transformed to real-time t by multiplying
by 〈τ〉, namely, t ) m〈τ〉.35 Figure 3B depicts the striking
C(t) derived from the long trajectory of a single enzyme
molecule. Every molecule under the same conditions
exhibits similar behavior. The long time span of the C(t)
underscores the fact that the single enzyme molecule’s
catalytic velocity fluctuates over a broad range of time
scales, from 10-3 to 10 s.

Similar enzymatic turnover rate fluctuations have been
observed in other systems, such as cholesterol oxidase,14

exonuclease,19 and lipase.21,22 We attribute these enzymatic
rate fluctuations to fluctuations in the enzyme conforma-
tions, which is the subject of the following section.

Conformational Fluctuations within a Single
Protein Molecule
We now describe another recent experiment23 that has
revealed conformational fluctuations within a single pro-
tein molecule spanning the time scales of milliseconds
to hundreds of seconds, the same time scale at which the
fluctuation of the enzymatic turnover rate constant takes
place. This observation has provided a clue for the
connection between enzymatic and conformational fluc-
tuations.

The system is a protein complex formed between
fluorescein (FL) and monoclonal anti-fluorescein (anti-
FL),23 whose crystal structure is shown in Figure 4A.
Compared with our previous study on a flavin enzyme,18

the FL/anti-FL complex is more stable with a low dis-
sociation constant of 0.1 nM, allowing long-time observa-
tions at the single-molecule level. While free FL molecules
in solution show a monoexponential fluorescence decay,
the FL/anti-FL complex has a shorter fluorescence life-
time, γ-1, with a multiexponential fluorescence decay
(Figure 4B).

This results from photoinduced electron transfer (ET)
from a nearby tyrosine residue (Tyr37 in anti-FL, the
donor) to FL (the acceptor), which shortens γ-1 of FL, γ-1

) (γ0 + γET)-1 ≈ γET
-1, where γ0 denotes the fluorescence

decay rate constant in the absence of quencher and γET

denotes the ET rate constant (γET . γ0). γET is exponen-
tially dependent on and therefore extremely sensitive to

1
〈τ〉

)
ø2[S]

[S] + CM
(5b)

FIGURE 3. (A) Histogram of the enzymatic turnover velocity for [S]
) 100 µM derived from a single-molecule trajectory after binning
every 50 turnover events into one data point for the turnover velocity
and (B) normalized autocorrelation functions of waiting times from
eq 6 for [S] ) 100 µM. This highlights the broad range of time scales
of turnover rate fluctuations, spanning at least four decades from
10-3 to 10 s. (Adapted from ref 25.)

C(m) )
〈∆τ(0)∆τ(m)〉

〈∆τ2〉
(6)
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the edge-to-edge distance between the ET donor and
acceptor,36

where k0 is a constant, xeq is the mean edge-to-edge
distance between FL and Tyr37, x(t) is the time-dependent
distance fluctuation around xeq, and â ≈ 1.4 Å-1 for
proteins. The multiexponential decay in Figure 4B is due
to the spontaneous fluctuation of x(t) during the course
of the fluorescence lifetime measurement. By recording
trajectories of γET

-1(t), that is, the sequence of the delay
time of each detected photon with respect to its excitation
pulse, we have been able to obtain trajectories of x(t).23,37

Figure 5A depicts a segment of the single-molecule x(t)
trajectory, along with the corresponding probability den-
sity of x, P(x).

The potential of mean force (Figure 5B), which is
determined by U(x) ) -kBT ln[P(x)], can be well fit to a
harmonic potential, U(x) ) kBTx2/(2θ), where θ ) 0.22 Å2.
The time scale of distance fluctuations can be extracted
from the autocorrelation function of x(t), Cx(t) ) 〈x(0)x(t)〉.
Figure 6A shows the Cx(t) averaged over 13 molecules with
fluctuations spanning a wide range of time scales, from
10-3 to 102 s, similar to the time scales of the turnover
rate fluctuations described above.

We note that there has been considerable ensemble-
averaged experimental evidence for the existence of long-

lived conformers and multiple relaxations times in pro-
teins. Most notable are the pioneering work of Frauenfielder
et al. on dispersed kinetics of rebinding of ligands to heme
protein upon photodissociation,29 and the observation of
spectral relaxation of the same system on multiple time
scales (10-12 to 10-4 s).38,39 The existence of long-lived
protein conformers was also inferred by mass spectrom-
etry.40 NMR spectroscopy has also revealed multiple
protein conformers with detailed structure information,
as well as interconversion rates among the conformers.41

In the complex energy landscape of a protein, con-
formers at different local free energy minima can inter-
convert at room temperature due to thermal fluctuation.42

Assuming an Arrhenius process with a prefactor of 1012

s-1, the interconversion occurs either at the picosecond
time scale if the barriers among them are 0.5 kcal/mol or
at the second time scale if the barriers are 16 kcal/mol,
which is by no mean unphysically high. The broad
distributions of the barriers give rise to the large time span
of conformational fluctuations. The single-molecule ex-
periment allows for the characterization of the multiple
time scale dynamics at an unprecedented level.43

In searching for a theoretical description of the ob-
served 1D diffusion along the experimentally accessible
coordinate, we first considered the Langevin equation for
a particle diffusing with a reduced mass m within a
harmonic well, U(x) ) mω2x2/2,

FIGURE 4. (A) Schematic of the structure of the FL and anti-FL
complex. Tyr37 and FL are highlighted (adapted from ref 57) and (B)
monoexponential fluorescence lifetime decay for a single FL
molecule (black curve), multiexponential fluorescence decay for the
FL/anti-FL complex at both ensemble (green curve) and single-
molecule (red curve) levels, and the instrumental response function
with 60-ps fwhm (blue curve) (adapted from ref 23).

γET(t) ) k0 e-â(xeq+x(t)) (7)

FIGURE 5. (A) A segment of the single-molecule x(t) trajectory with
the corresponding probability density function P(x). The dashed line
is the Gaussian fit for P(x). (B) Potential of mean force U(x) obtained
from U(x) ) -kBT ln[P(x)]. The dashed line is the best fit to a
harmonic potential U(x) ) kBTx2/(2θ), where θ ) 0.22 Å2. (Adapted
from ref 23.)

m
d2x(t)

dt2
) -ú

dx(t)
dt

-
dU(x)

dx
+ F(t) (8)
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where ú, the frictional constant, is related to the amplitude
of the random fluctuating force, F, which is assumed to
be white noise. However, eq 8 leads to the result Cx(t) )
θ exp(-mω2t/ú). The monoexponential decay fails to
account for the observed multiexpoential Cx(t), suggesting
that the observed diffusion does not correspond to
Brownian motion in a harmonic well.

The physical picture to explain the observation is that
a protein molecule is a “sluggish” system in which one
degree of freedom (say x) is strongly coupled to other
degrees of freedom. A change in x requires collective
motions of the other degrees of freedom. This results in a
long time memory effect, a characteristic of non-Mark-
ovian behavior.

A mathematical reduction of this picture is provided
by the generalized Langevin equation (GLE), which rigor-
ously describes, in the linear response regime, the dynam-
ics of a single degree of freedom of a general (n + 1)-
dimensional Hamiltonian with n f ∞ degrees of freedom
of the bath.44 The GLE is given by

where úK(t), the friction kernel, is the dynamic generaliza-
tion of the static friction constant ú in eq 8, and F(t) is
the random fluctuating force due to thermal motions of
the bath and is no longer white but colored noise. For

equilibrium fluctuations, F(t) and úK(t) are related by the
second fluctuation-dissipation theorem

In the over-damped limit, where the inertial term m d2x(t)/
dt2 can be neglected, we have shown that

where K̃(s) and C̃x(s) are the Laplace transforms of K(t)
and Cx(t), respectively.23 When Cx(t) is known from experi-
ment, K̃(s) can be calculated by numerical Laplace trans-
form of Cx(t).

We note that Berne and co-workers have extracted the
memory kernel from velocity correlation functions derived
from trajectories of molecular dynamics (MD) simulations
on the femtosecond to picosecond time scales.45 Equation
11 works for the over-damped regime (high ú), allowing
for the determination of the memory kernel at much
longer time scales. The result, after normalization, is
shown in Figure 6B. Over at least four decades of time,
K̃(s) exhibits a simple power-law decay, K̃(s) ∝ sR, with R
) -0.49 ( 0.07. The inverse Laplace transform of K̃(s) gives
K(t) ) t-R-1 ∝ t-1/2, which is remarkably simple.23

Is the existence of a power-law friction kernel on the
10-3 to 102 s time scale a common phenomenon for all
proteins? The experiment on flavin adenine dinucleotide
(FAD)/flavin oxidoreductase (Fre) complex also shows a
power-law friction kernel with a similar power-law expo-
nent.20 The fact that these two systems are quite distinct
both structurally and functionally and that the distances
between ET donor and acceptor are different argues for
the generality of power-law friction kernels common for
all proteins. Similarly, MD simulations suggest a power-
law behavior in the internal motion of lysozyme in
solution on the picosecond to nanosecond time scales.46

Single ion channel experiments have indicated that pro-
tein flexibility results in 1/fR noise in ion channel cur-
rents.47,48

More single-molecule experiments on additional sys-
tems are certainly needed to validate the generality of the
power law phenomenon. Theoretically, however, we have
recently proposed a microscopic model to account for the
power law memory kernels based on the dynamics of a
continuum semiflexible polymer chain.49

Kramer’s Barrier Crossing Problem without
Time Scale Separation
We shall now return to the observed multiexponential
waiting time distributions (Figure 2B) and waiting time
autocorrelations (Figure 3B) of enzyme catalysis. As
discussed by Karplus,50 this is a typical dynamic disorder
phenomenon associated with protein biochemical reac-
tions. Despite much progress in this field in the past two
decades, the underpinnings are still not well understood
theoretically. An insightful treatment of dynamic disorder
has been given by Zwanzig in terms of a time-varying

FIGURE 6. (A) Autocorrelation function of distance fluctuation
Cx(t) of the FL/anti-FL complex averaged over 13 molecules,
determined with high time resolution, with Cx(0) ) θ ) 0.22 Å2 and
(B) normalized K̃(s) calculated from Cx(t) in panel A using eq 11 (open
circles). The full line is the fit of s-0.49. Its inverse Laplace transform
gives K(t) ∝ t-0.51. The dashed lines are error bounds carried over
from the error bounds of Cx(t) in panel A. (Adapted from ref 23.)

m
d2x(t)

dt2
) -ú∫0

t
dτ K(t - τ)

dx(τ)
dτ

-
dU(x)

dx
+ F(t) (9)

〈F(t)F(τ)〉 ) kBTúK(t - τ) (10)

K̃(s) ) mω2

ú
C̃x(s)

Cx(0) - sC̃x(s)
(11)
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control parameter, such as the area of the bottleneck.27,28

Since then, various extensions and generalizations have
been put forward along different lines.51-53 Although this
approach is conceptually straightforward, the control
parameters are usually not experimentally accessible. As
a result, their dynamics is often assumed empirically on
an ad hoc basis. Instead, here we present an alterative
model that employs the GLE for the Kramers’ barrier
crossing problem in conjunction with the experimentally
determined power-law memory kernel.33

Kramers’ approach to the problem of barrier crossing
over a barrier is the corner stone for studies of chemical
kinetics in the condensed phase.31,32 The key idea is to
describe a chemical reaction in terms of thermally acti-
vated barrier crossing events in a one-dimensional reac-
tion coordinate. Despite its simplicity, the one-dimen-
sional picture captures the essence of chemical dynamics,
even for complicated systems such as proteins. In Kram-
ers’ original paper,31 the bath friction is treated as being
Markovian and the random fluctuating force is assumed
to be Gaussian white noise (implying that the bath relaxes
infinitely fast). As an important extension of Kramers’
theory, Grote and Hynes introduced non-Markovian fric-
tion into the GLE for a bath with a finite time scale of
thermal fluctuations.54

Both Kramers and Grote-Hynes theories give well-
defined rate constants and therefore cannot account for
dispersed kinetics or dynamic disorder, because the
fluctuation of the reaction coordinate is always relatively
fast compared to the reaction time scale30,32 In other
words, a clear separation of time scales is assumed in the
theories of Kramers and Grote-Hynes at the outset.

However, what we have learned about single-molecule
protein conformational fluctuations is that they span an
extremely broad range of time scales and coincide with
those of the enzymatic reaction.23,20 Recent theoretical
investigations have also suggested that the power-law
friction kernel could be general for protein dynamics.49,55

Our premise is that the same friction kernel might hold
for the reaction coordinate in Kramers’ escape problem
for enzymatic reactions.

In our model, the dynamic disorder is not due to the
fluctuation of barrier heights but is attributed to the non-
Markovian random fluctuating force, F(t). The attribution
is less ad hoc in the context of GLE. With the phenom-
enological power law autocorrelation function, F(t) fluctu-
ates at time scales comparable to or longer than the time
scale of barrier crossing. Such a lack of time scale
separation has profound consequences for the reaction
dynamics. In fact, rate constants no longer exist under
this condition.

We have carried out stochastic simulations of general-
ized Langevin dynamics with a power-law memory ker-
nel.33 The equation that we numerically simulated is eq 9
in which U(x) is a symmetric double well potential with a
barrier height of Ea, a harmonic well frequency ωa, and a
barrier frequency ωb (Figure 7, inset). The memory kernel
function K(t) was chosen to be K(t - τ) ∝ |t - τ|-1/2

according to the experimental findings described above.

The sampling algorithm for the random fluctuating
force is based on a circulant matrix method that was orig-
inally designed for fractional Brownian motion.56 We start
the trajectory in the left well and record the waiting time
when x(t) crosses over the bottom of the product well.
For a barrier height Ea ) 2kBT, barrier crossing events can
be followed directly with reasonable computational times.

Figure 7 displays the simulated distribution of the first
passage time, f(τ). For weak coupling strength (low friction
coefficient, ú), f(τ) shows single-exponential decay. How-
ever, for the large coupling strength limit (ú ) 1), f(τ)
exhibits multiexponential decay. For the latter situation,
the same as the experimental data presented earlier, a rate
constant is no longer well defined.30,32

We have also computed the autocorrelation function
of the waiting times from a simulated repetitive enzymatic
turnover trajectory.33 For repetitive enzymatic turnovers
with instantaneous reset from the product well to the
reactant well, the random fluctuating force, F(t), is con-
tinuously sampled following the power-law dynamics.
Figure 8 depicts C(m) of waiting times from a simulated
10 000 turnovers trajectory, calculated by eq 6. The
multiexponential decay of C(m) over three decades of time

FIGURE 7. The waiting time distributions from the numeric
simulation of Kramers’ barrier crossing over a barrier (inset) with a
power-law friction kernel described by GLE. The deviation of the
decay from single-exponential behavior is greater when the coupling
strength increases. In the simulation, m ) 1, kBT ) 1, the barrier
height Ea ) 2kBT, and all the times are given in units of 1/ωa.
(Adapted from ref 33.)

FIGURE 8. Autocorrelation function C(m) ) 〈∆τ(0)∆τ(m)〉/〈∆τ2〉 of
a simulated waiting time trajectory that consists of 10 000 successive
turnovers. The waiting time correlations span over a broad range
of time scales, resembling the observed experimental results in
Figure 3B. (Adapted from ref 33.)
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scales clearly resembles the observed experimental results
shown in Figure 3B.

The essence of our model is that by incorporating the
experimentally determined power-law friction kernel into
the GLE treatment of Kramers’ barrier crossing formalism,
the key experimental findings of multiexponential waiting
time distributions and autocorrelations of enzymatic
turnovers are accounted for naturally. The lack of a
separation of time scales between the enzymatic turnover
and conformational fluctuations results in no well-defined
rate constant for enzymatic reactions.

In practice, only the mean enzymatic turnover rate,
1/〈τ〉, holds rigorous physical meaning and could be well
described by the Michaelis-Menten equation. The cata-
lytic rate constants reported from ensemble-averaged
assays are either oversimplifications due to low observable
dynamic ranges and insufficient time spans of the data
or associated with complicated functions reflecting dy-
namic disorder (eq 5b).

Conclusions
Our single-molecule experiments, together with theoreti-
cal and computational studies, have demonstrated that
the single-molecule approach is extremely powerful in
unraveling the conformational and enzymatic dynamics
and have generated new insights about how enzymes’
conformational fluctuations modulate catalytic activities.
They not only have provided a qualitative picture that an
enzyme molecule is a dynamic entity with fluctuations
spanning a vast range of time scales but also have yielded
quantitative information. In particular, we have shown
that single-molecule Michaelis-Menten equations rec-
oncile single-molecule and ensemble-averaged kinetics
and that conformational fluctuations and dynamic dis-
order can be described by non-Markovian dynamics
governed by the GLE.

The effects of enzymatic fluctuations would be less
significant for a system comprising many enzyme mol-
ecules. However, they might have important implications
for a living cell with a low copy number of enzymes in
which the fluctuations might be readily manifested and
have physiological consequences.

We hope this Account will add to our growing under-
standing of the working of enzymes and stimulate further
experimental and theoretical investigations of enzyme
dynamics in the future.
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